Homework – Incidence Geometry

Deadline: Mar. 12, 2013

1. Given a point $P = [x_0, y_0, z_0]$ and a line

$$\ell : ux + vy + wz = 0$$

in the real projective plane \mathbb{P} , where $(u, v, w) \neq (0, 0, 0)$ and P is not on ℓ . Find a homogeneous coordinate formula for the projection from P to ℓ . In particular, when P is the point at infinity on the x-axis and ℓ is the y-axis, explain your formula. (Show your steps)

- 2. Switch the names of points and lines in a projective plane P to have a new system P' of points and lines whose incidence are the same as in P. Show that P' forms a projective plane.
- 3. Let P be a finite projective plane, i.e., there are finite number of points in P. Show that every line has the same number of points. If each line has n + 1 points, show that
 - (a) For each point in \boldsymbol{P} there are exactly n+1 lines through it.
 - (b) The total number of points in \boldsymbol{P} is $n^2 + n + 1$.
 - (c) The total number of lines in \mathbf{P} is $n^2 + n + 1$.
- 4. Let P be a projective plane and ℓ be a line in it. Delete all points on ℓ from P to have a subsystem A with points and lines, and keep the same incidence relation. Show that A forms an affine plane.